Mechanisms of Acquired Resistance and Tolerance to EGFR Targeted Therapy in Non-Small Cell Lung Cancer (2024)

1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi:10.3322/caac.21660. [PubMed] [CrossRef] [Google Scholar]

2. Gazdar A.F., Bunn P.A., Minna J.D. Small-Cell Lung Cancer: What We Know, What We Need to Know and the Path Forward. Nat. Rev. Cancer. 2017;17:725–737. doi:10.1038/nrc.2017.87. [PubMed] [CrossRef] [Google Scholar]

3. Herbst R.S., Morgensztern D., Boshoff C. The Biology and Management of Non-Small Cell Lung Cancer. Nature. 2018;553:446–454. doi:10.1038/nature25183. [PubMed] [CrossRef] [Google Scholar]

4. Chen Z., Fillmore C.M., Hammerman P.S., Kim C.F., Wong K.-K. Non-Small-Cell Lung Cancers: A Heterogeneous Set of Diseases. Nat. Rev. Cancer. 2014;14:535–546. doi:10.1038/nrc3775. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Kenfield S.A., Wei E.K., Stampfer M.J., Rosner B.A., Colditz G.A. Comparison of Aspects of Smoking Among Four Histologic Types of Lung Cancer. Tob. Control. 2008;17:198–204. doi:10.1136/tc.2007.022582. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Davidson M.R., Gazdar A.F., Clarke B.E. The Pivotal Role of Pathology in the Management of Lung Cancer. J. Thorac. Dis. 2013;5((Suppl. 5)):S463–S478. doi:10.3978/j.issn.2072-1439.2013.08.43. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Rekhtman N., Travis W.D. Large No More: The Journey of Pulmonary Large Cell Carcinoma from Common to Rare Entity. J. Thorac. Oncol. 2019;14:1125–1127. doi:10.1016/j.jtho.2019.04.014. [PubMed] [CrossRef] [Google Scholar]

8. Rodak O., Peris-Díaz M.D., Olbromski M., Podhorska-Okołów M., Dzięgiel P. Current Landscape of Non-Small Cell Lung Cancer: Epidemiology, Histological Classification, Targeted Therapies, and Immunotherapy. Cancers. 2021;13:4705. doi:10.3390/cancers13184705. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Wang M., Herbst R.S., Boshoff C. Toward Personalized Treatment Approaches for Non-Small-Cell Lung Cancer. Nat. Med. 2021;27:1345–1356. doi:10.1038/s41591-021-01450-2. [PubMed] [CrossRef] [Google Scholar]

10. Weinstein I.B. Addiction to Oncogenes—The Achilles Heal of Cancer. Science. 2002;297:63–64. doi:10.1126/science.1073096. [PubMed] [CrossRef] [Google Scholar]

11. Rotow J., Bivona T.G. Understanding and Targeting Resistance Mechanisms in NSCLC. Nat. Rev. Cancer. 2017;17:637–658. doi:10.1038/nrc.2017.84. [PubMed] [CrossRef] [Google Scholar]

12. Tsao A.S., Scagliotti G.V., Bunn P.A., Carbone D.P., Warren G.W., Bai C., de Koning H.J., Yousaf-Khan A.U., McWilliams A., Tsao M.S., et al. Scientific Advances in Lung Cancer 2015. J. Thorac. Oncol. 2016;11:613–638. doi:10.1016/j.jtho.2016.03.012. [PubMed] [CrossRef] [Google Scholar]

13. Roskoski R. The ErbB/HER Family of Protein-Tyrosine Kinases and Cancer. Pharmacol. Res. 2014;79:34–74. doi:10.1016/j.phrs.2013.11.002. [PubMed] [CrossRef] [Google Scholar]

14. Shi Y., Au J.S.-K., Thongprasert S., Srinivasan S., Tsai C.-M., Khoa M.T., Heeroma K., Itoh Y., Cornelio G., Yang P.-C. A Prospective, Molecular Epidemiology Study of EGFR Mutations in Asian Patients with Advanced Non-Small-Cell Lung Cancer of Adenocarcinoma Histology (PIONEER) J. Thorac. Oncol. 2014;9:154–162. doi:10.1097/JTO.0000000000000033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Paez J.G., Jänne P.A., Lee J.C., Tracy S., Greulich H., Gabriel S., Herman P., Kaye F.J., Lindeman N., Boggon T.J., et al. EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. Science. 2004;304:1497–1500. doi:10.1126/science.1099314. [PubMed] [CrossRef] [Google Scholar]

16. Lynch T.J., Bell D.W., Sordella R., Gurubhagavatula S., Okimoto R.A., Brannigan B.W., Harris P.L., Haserlat S.M., Supko J.G., Haluska F.G., et al. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib. N. Engl. J. Med. 2004;350:2129–2139. doi:10.1056/NEJMoa040938. [PubMed] [CrossRef] [Google Scholar]

17. Kobayashi S., Canepa H.M., Bailey A.S., Nakayama S., Yamaguchi N., Goldstein M.A., Huberman M.S., Costa D.B. Compound EGFR Mutations and Response to EGFR Tyrosine Kinase Inhibitors. J. Thorac. Oncol. 2013;8:45–51. doi:10.1097/JTO.0b013e3182781e35. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Shan Y., Eastwood M.P., Zhang X., Kim E.T., Arkhipov A., Dror R.O., Jumper J., Kuriyan J., Shaw D.E. Oncogenic Mutations Counteract Intrinsic Disorder in the EGFR Kinase and Promote Receptor Dimerization. Cell. 2012;149:860–870. doi:10.1016/j.cell.2012.02.063. [PubMed] [CrossRef] [Google Scholar]

19. Kate S., Chougule A., Joshi A., Noronha V., Patil V., Dusane R., Solanki L., Tiwrekar P., Trivedi V., Prabhash K. Outcome of Uncommon EGFR Mutation Positive Newly Diagnosed Advanced Non-Small Cell Lung Cancer Patients: A Single Center Retrospective Analysis. Lung Cancer. 2019;10:1–10. doi:10.2147/LCTT.S181406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Sharma S.V., Bell D.W., Settleman J., Haber D.A. Epidermal Growth Factor Receptor Mutations in Lung Cancer. Nat. Rev. Cancer. 2007;7:169–181. doi:10.1038/nrc2088. [PubMed] [CrossRef] [Google Scholar]

21. Lee C.K., Wu Y.-L., Ding P.N., Lord S.J., Inoue A., Zhou C., Mitsudomi T., Rosell R., Pavlakis N., Links M., et al. Impact of Specific Epidermal Growth Factor Receptor (EGFR) Mutations and Clinical Characteristics on Outcomes After Treatment With EGFR Tyrosine Kinase Inhibitors Versus Chemotherapy in EGFR-Mutant Lung Cancer: A Meta-Analysis. J. Clin. Oncol. 2015;33:1958–1965. doi:10.1200/JCO.2014.58.1736. [PubMed] [CrossRef] [Google Scholar]

22. Mitsudomi T., Morita S., Yatabe Y., Negoro S., Okamoto I., Tsurutani J., Seto T., Satouchi M., Tada H., Hirashima T., et al. Gefitinib versus Cisplatin plus Docetaxel in Patients with Non-Small-Cell Lung Cancer Harbouring Mutations of the Epidermal Growth Factor Receptor (WJTOG3405): An Open Label, Randomised Phase 3 Trial. Lancet Oncol. 2010;11:121–128. doi:10.1016/S1470-2045(09)70364-X. [PubMed] [CrossRef] [Google Scholar]

23. Zhou C., Wu Y.L., Chen G., Feng J., Liu X.-Q., Wang C., Zhang S., Wang J., Zhou S., Ren S., et al. Final Overall Survival Results from a Randomised, Phase III Study of Erlotinib versus Chemotherapy as First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer (OPTIMAL, CTONG-0802) Ann. Oncol. 2015;26:1877–1883. doi:10.1093/annonc/mdv276. [PubMed] [CrossRef] [Google Scholar]

24. Rosell R., Carcereny E., Gervais R., Vergnenegre A., Massuti B., Felip E., Palmero R., Garcia-Gomez R., Pallares C., Sanchez J.M., et al. Erlotinib versus Standard Chemotherapy as First-Line Treatment for European Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer (EURTAC): A Multicentre, Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2012;13:239–246. doi:10.1016/S1470-2045(11)70393-X. [PubMed] [CrossRef] [Google Scholar]

25. Vasconcelos P.E.N.S., Gergis C., Viray H., Varkaris A., Fujii M., Rangachari D., VanderLaan P.A., Kobayashi I.S., Kobayashi S.S., Costa D.B. EGFR-A763_Y764insFQEA Is a Unique Exon 20 Insertion Mutation That Displays Sensitivity to Approved and In-Development Lung Cancer EGFR Tyrosine Kinase Inhibitors. JTO Clin. Res. Rep. 2020;1:100051. doi:10.1016/j.jtocrr.2020.100051. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Morgillo F., Della Corte C.M., Fasano M., Ciardiello F. Mechanisms of Resistance to EGFR-Targeted Drugs: Lung Cancer. ESMO Open. 2016;1:e000060. doi:10.1136/esmoopen-2016-000060. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Pao W., Miller V.A., Politi K.A., Riely G.J., Somwar R., Zakowski M.F., Kris M.G., Varmus H. Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain. PLoS Med. 2005;2:e73. doi:10.1371/journal.pmed.0020073. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Yu H.A., Arcila M.E., Rekhtman N., Sima C.S., Zakowski M.F., Pao W., Kris M.G., Miller V.A., Ladanyi M., Riely G.J. Analysis of Tumor Specimens at the Time of Acquired Resistance to EGFR TKI Therapy in 155 Patients with EGFR Mutant Lung Cancers. Clin. Cancer Res. 2013;19:2240–2247. doi:10.1158/1078-0432.CCR-12-2246. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Yun C.-H., Mengwasser K.E., Toms A.V., Woo M.S., Greulich H., Wong K.-K., Meyerson M., Eck M.J. The T790M Mutation in EGFR Kinase Causes Drug Resistance by Increasing the Affinity for ATP. Proc. Natl. Acad. Sci. USA. 2008;105:2070–2075. doi:10.1073/pnas.0709662105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Katakami N., Atagi S., Goto K., Hida T., Horai T., Inoue A., Ichinose Y., Koboyashi K., Takeda K., Kiura K., et al. LUX-Lung 4: A Phase II Trial of Afatinib in Patients with Advanced Non-Small-Cell Lung Cancer Who Progressed during Prior Treatment with Erlotinib, Gefitinib, or Both. J. Clin. Oncol. 2013;31:3335–3341. doi:10.1200/JCO.2012.45.0981. [PubMed] [CrossRef] [Google Scholar]

31. Miller V.A., Hirsh V., Cadranel J., Chen Y.-M., Park K., Kim S.-W., Zhou C., Su W.-C., Wang M., Sun Y., et al. Afatinib versus Placebo for Patients with Advanced, Metastatic Non-Small-Cell Lung Cancer after Failure of Erlotinib, Gefitinib, or Both, and One or Two Lines of Chemotherapy (LUX-Lung 1): A Phase 2b/3 Randomised Trial. Lancet Oncol. 2012;13:528–538. doi:10.1016/S1470-2045(12)70087-6. [PubMed] [CrossRef] [Google Scholar]

32. Haspinger E.R., Agustoni F., Torri V., Gelsomino F., Platania M., Zilembo N., Gallucci R., Garassino M.C., Cinquini M. Is There Evidence for Different Effects among EGFR-TKIs? Systematic Review and Meta-Analysis of EGFR Tyrosine Kinase Inhibitors (TKIs) versus Chemotherapy as First-Line Treatment for Patients Harboring EGFR Mutations. Crit. Rev. Oncol. Hematol. 2015;94:213–227. doi:10.1016/j.critrevonc.2014.11.005. [PubMed] [CrossRef] [Google Scholar]

33. Yang Z., Hackshaw A., Feng Q., Fu X., Zhang Y., Mao C., Tang J. Comparison of Gefitinib, Erlotinib and Afatinib in Non-Small Cell Lung Cancer: A Meta-Analysis. Int. J. Cancer. 2017;140:2805–2819. doi:10.1002/ijc.30691. [PubMed] [CrossRef] [Google Scholar]

34. Zhou W., Ercan D., Chen L., Yun C.-H., Li D., Capelletti M., Cortot A.B., Chirieac L., Iacob R.E., Padera R., et al. Novel Mutant-Selective EGFR Kinase Inhibitors against EGFR T790M. Nature. 2009;462:1070–1074. doi:10.1038/nature08622. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Jänne P.A., Yang J.C.-H., Kim D.-W., Planchard D., Ohe Y., Ramalingam S.S., Ahn M.-J., Kim S.-W., Su W.-C., Horn L., et al. AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015;372:1689–1699. doi:10.1056/NEJMoa1411817. [PubMed] [CrossRef] [Google Scholar]

36. Sequist L.V., Soria J.-C., Goldman J.W., Wakelee H.A., Gadgeel S.M., Varga A., Papadimitrakopoulou V., Solomon B.J., Oxnard G.R., Dziadziuszko R., et al. Rociletinib in EGFR-Mutated Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015;372:1700–1709. doi:10.1056/NEJMoa1413654. [PubMed] [CrossRef] [Google Scholar]

37. Van Der Steen N., Caparello C., Rolfo C., Pauwels P., Peters G.J., Giovannetti E. New Developments in the Management of Non-Small-Cell Lung Cancer, Focus on Rociletinib: What Went Wrong? Onco Targets Ther. 2016;9:6065–6074. doi:10.2147/OTT.S97644. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Jänne P.A., Ahn M.-J., Kim D.-W., Kim S.-W., Planchard D., Ramalingam S.S., Frewer P., Cantarini M., Ghiorghiu S., Yang J.C.-H. A Phase I Study of AZD9291 in Patients with Egfr-Tki-Resistant Advanced Nsclc—Updated Progression Free Survival and Duration of Response Data. Ann. Oncol. 2015;26:i57. doi:10.1093/annonc/mdv128.05. [CrossRef] [Google Scholar]

39. Mok T.S., Wu Y.-L., Ahn M.-J., Garassino M.C., Kim H.R., Ramalingam S.S., Shepherd F.A., He Y., Akamatsu H., Theelen W.S.M.E., et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017;376:629–640. doi:10.1056/NEJMoa1612674. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Ramalingam S.S., Vansteenkiste J., Planchard D., Cho B.C., Gray J.E., Ohe Y., Zhou C., Reungwetwattana T., Cheng Y., Chewaskulyong B., et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020;382:41–50. doi:10.1056/NEJMoa1913662. [PubMed] [CrossRef] [Google Scholar]

41. Soria J.-C., Ohe Y., Vansteenkiste J., Reungwetwattana T., Chewaskulyong B., Lee K.H., Dechaphunkul A., Imamura F., Nogami N., Kurata T., et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018;378:113–125. doi:10.1056/NEJMoa1713137. [PubMed] [CrossRef] [Google Scholar]

42. Ahn M.-J., Han J.-Y., Lee K.H., Kim S.-W., Kim D.-W., Lee Y.-G., Cho E.K., Kim J.-H., Lee G.-W., Lee J.-S., et al. Lazertinib in Patients with EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer: Results from the Dose Escalation and Dose Expansion Parts of a First-in-Human, Open-Label, Multicentre, Phase 1–2 Study. Lancet Oncol. 2019;20:1681–1690. doi:10.1016/S1470-2045(19)30504-2. [PubMed] [CrossRef] [Google Scholar]

43. Yang J.C.-H., Camidge D.R., Yang C.-T., Zhou J., Guo R., Chiu C.-H., Chang G.-C., Shiah H.-S., Chen Y., Wang C.-C., et al. Safety, Efficacy, and Pharmaco*kinetics of Almonertinib (HS-10296) in Pretreated Patients With EGFR-Mutated Advanced NSCLC: A Multicenter, Open-Label, Phase 1 Trial. J. Thorac. Oncol. 2020;15:1907–1918. doi:10.1016/j.jtho.2020.09.001. [PubMed] [CrossRef] [Google Scholar]

44. Oxnard G.R., Hu Y., Mileham K.F., Husain H., Costa D.B., Tracy P., Feeney N., Sholl L.M., Dahlberg S.E., Redig A.J., et al. Assessment of Resistance Mechanisms and Clinical Implications in Patients With EGFR T790M-Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncol. 2018;4:1527–1534. doi:10.1001/jamaoncol.2018.2969. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Thress K.S., Paweletz C.P., Felip E., Cho B.C., Stetson D., Dougherty B., Lai Z., Markovets A., Vivancos A., Kuang Y., et al. Acquired EGFR C797S Mediates Resistance to AZD9291 in Advanced Non-Small Cell Lung Cancer Harboring EGFR T790M. Nat. Med. 2015;21:560–562. doi:10.1038/nm.3854. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Papadimitrakopoulou V.A., Wu Y.-L., Han J.-Y., Ahn M.-J., Ramalingam S.S., John T., Okamoto I., Yang J.C.-H., Bulusu K.C., Laus G., et al. Analysis of Resistance Mechanisms to Osimertinib in Patients with EGFR T790M Advanced NSCLC from the AURA3 Study. Ann. Oncol. 2018;29:viii741. doi:10.1093/annonc/mdy424.064. [CrossRef] [Google Scholar]

47. Niederst M.J., Hu H., Mulvey H.E., Lockerman E.L., Garcia A.R., Piotrowska Z., Sequist L.V., Engelman J.A. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015;21:3924–3933. doi:10.1158/1078-0432.CCR-15-0560. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Ramalingam S.S., Cheng Y., Zhou C., Ohe Y., Imamura F., Cho B.C., Lin M.-C., Majem M., Shah R., Rukazenkov Y., et al. Mechanisms of Acquired Resistance to First-Line Osimertinib: Preliminary Data from the Phase III FLAURA Study. Ann. Oncol. 2018;29:viii740. doi:10.1093/annonc/mdy424.063. [CrossRef] [Google Scholar]

49. Yang Z., Yang N., Ou Q., Xiang Y., Jiang T., Wu X., Bao H., Tong X., Wang X., Shao Y.W., et al. Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non–Small Cell Lung Cancer Patients. Clin. Cancer Res. 2018;24:3097–3107. doi:10.1158/1078-0432.CCR-17-2310. [PubMed] [CrossRef] [Google Scholar]

50. Zhang Y., He B., Zhou D., Li M., Hu C. Newly Emergent Acquired EGFR Exon 18 G724S Mutation after Resistance of a T790M Specific EGFR Inhibitor Osimertinib in Non-Small-Cell Lung Cancer: A Case Report. Onco Targets Ther. 2018;12:51–56. doi:10.2147/OTT.S188612. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Lin C.-C., Shih J.-Y., Yu C.-J., Ho C.-C., Liao W.-Y., Lee J.-H., Tsai T.-H., Su K.-Y., Hsieh M.-S., Chang Y.-L., et al. Outcomes in Patients with Non-Small-Cell Lung Cancer and Acquired Thr790Met Mutation Treated with Osimertinib: A Genomic Study. Lancet Respir. Med. 2018;6:107–116. doi:10.1016/S2213-2600(17)30480-0. [PubMed] [CrossRef] [Google Scholar]

52. Passaro A., Jänne P.A., Mok T., Peters S. Overcoming Therapy Resistance in EGFR-Mutant Lung Cancer. Nat. Cancer. 2021;2:377–391. doi:10.1038/s43018-021-00195-8. [PubMed] [CrossRef] [Google Scholar]

53. Piotrowska Z., Isozaki H., Lennerz J.K., Gainor J.F., Lennes I.T., Zhu V.W., Marcoux N., Banwait M.K., Digumarthy S.R., Su W., et al. Landscape of Acquired Resistance to Osimertinib in EGFR-Mutant NSCLC and Clinical Validation of Combined EGFR and RET Inhibition with Osimertinib and BLU-667 for Acquired RET Fusion. Cancer Discov. 2018;8:1529–1539. doi:10.1158/2159-8290.CD-18-1022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Weng C.-H., Chen L.-Y., Lin Y.-C., Shih J.-Y., Lin Y.-C., Tseng R.-Y., Chiu A.-C., Yeh Y.-H., Liu C., Lin Y.-T., et al. Epithelial-Mesenchymal Transition (EMT) beyond EGFR Mutations per Se Is a Common Mechanism for Acquired Resistance to EGFR TKI. Oncogene. 2019;38:455–468. doi:10.1038/s41388-018-0454-2. [PubMed] [CrossRef] [Google Scholar]

55. Jia Y., Yun C.-H., Park E., Ercan D., Manuia M., Juarez J., Xu C., Rhee K., Chen T., Zhang H., et al. Overcoming EGFR(T790M) and EGFR(C797S) Resistance with Mutant-Selective Allosteric Inhibitors. Nature. 2016;534:129–132. doi:10.1038/nature17960. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. To C., Beyett T.S., Jang J., Feng W.W., Bahcall M., Haikala H.M., Shin B.H., Heppner D.E., Rana J.K., Leeper B.A., et al. An Allosteric Inhibitor against the Therapy-Resistant Mutant Forms of EGFR in Non-Small Cell Lung Cancer. Nat. Cancer. 2022;3:402–417. doi:10.1038/s43018-022-00351-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Ferlenghi F., Scalvini L., Vacondio F., Castelli R., Bozza N., Marseglia G., Rivara S., Lodola A., La Monica S., Minari R., et al. A Sulfonyl Fluoride Derivative Inhibits EGFRL858R/T790M/C797S by Covalent Modification of the Catalytic Lysine. Eur. J. Med. Chem. 2021;225:113786. doi:10.1016/j.ejmech.2021.113786. [PubMed] [CrossRef] [Google Scholar]

58. Spigel D., Goto K., Camidge D.R., Elamin Y., de Langen A.J., Leighl N.B., Minchom A., Piotrowska Z., Planchard D., Reckamp K., et al. Abstract P230: A Phase 1/2 Study of BLU-945, a Highly Potent and Selective Inhibitor of Epidermal Growth Factor Receptor (EGFR) Resistance Mutations, in Patients with EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC) Mol. Cancer Ther. 2021;20:P230. doi:10.1158/1535-7163.TARG-21-P230. [CrossRef] [Google Scholar]

59. Lim S.M., Kim D.-W., Jung J.E., Lee G., Ryou J.-H., Kang S.-U., Lee Y.-H., Shin H.-J., Yum S.Y., Yim E., et al. 1365TiP A Phase I/II, Open-Label Study of BBT-176, a Triple Mutation Targeting EGFR TKI, in Patients with NSCLC Who Progressed after Prior EGFR TKI Therapy. Ann. Oncol. 2021;32:S1035. doi:10.1016/j.annonc.2021.08.1966. [CrossRef] [Google Scholar]

60. Liu X., Zhang X., Yang L., Tian X., Dong T., Ding C.Z., Hu L., Wu L., Zhao L., Mao J., et al. Abstract 1320: Preclinical Evaluation of TQB3804, a Potent EGFR C797S Inhibitor. Cancer Res. 2019;79:1320. doi:10.1158/1538-7445.AM2019-1320. [CrossRef] [Google Scholar]

61. Burslem G.M., Crews C.M. Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell. 2020;181:102–114. doi:10.1016/j.cell.2019.11.031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Dale B., Cheng M., Park K.-S., Kaniskan H.Ü., Xiong Y., Jin J. Advancing Targeted Protein Degradation for Cancer Therapy. Nat. Rev. Cancer. 2021;21:638–654. doi:10.1038/s41568-021-00365-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Qu X., Liu H., Song X., Sun N., Zhong H., Qiu X., Yang X., Jiang B. Effective Degradation of EGFRL858R+T790M Mutant Proteins by CRBN-Based PROTACs through Both Proteosome and Autophagy/Lysosome Degradation Systems. Eur. J. Med. Chem. 2021;218:113328. doi:10.1016/j.ejmech.2021.113328. [PubMed] [CrossRef] [Google Scholar]

64. Zhang H., Zhao H.-Y., Xi X.-X., Liu Y.-J., Xin M., Mao S., Zhang J.-J., Lu A.-X., Zhang S.-Q. Discovery of Potent Epidermal Growth Factor Receptor (EGFR) Degraders by Proteolysis Targeting Chimera (PROTAC) Eur. J. Med. Chem. 2020;189:112061. doi:10.1016/j.ejmech.2020.112061. [PubMed] [CrossRef] [Google Scholar]

65. Zhao H.-Y., Yang X.-Y., Lei H., Xi X.-X., Lu S.-M., Zhang J.-J., Xin M., Zhang S.-Q. Discovery of Potent Small Molecule PROTACs Targeting Mutant EGFR. Eur. J. Med. Chem. 2020;208:112781. doi:10.1016/j.ejmech.2020.112781. [PubMed] [CrossRef] [Google Scholar]

66. Du Y., Chen Y., Wang Y., Chen J., Lu X., Zhang L., Li Y., Wang Z., Ye G., Zhang G. HJM-561, a Potent, Selective, and Orally Bioavailable EGFR PROTAC That Overcomes Osimertinib-Resistant EGFR Triple Mutations. Mol. Cancer Ther. 2022;21:1060–1066. doi:10.1158/1535-7163.MCT-21-0835. [PubMed] [CrossRef] [Google Scholar]

67. Bhang H.C., Ruddy D.A., Krishnamurthy Radhakrishna V., Caushi J.X., Zhao R., Hims M.M., Singh A.P., Kao I., Rakiec D., Shaw P., et al. Studying Clonal Dynamics in Response to Cancer Therapy Using High-Complexity Barcoding. Nat. Med. 2015;21:440–448. doi:10.1038/nm.3841. [PubMed] [CrossRef] [Google Scholar]

68. Hata A.N., Niederst M.J., Archibald H.L., Gomez-Caraballo M., Siddiqui F.M., Mulvey H.E., Maruvka Y.E., Ji F., Bhang H.C., Krishnamurthy Radhakrishna V., et al. Tumor Cells Can Follow Distinct Evolutionary Paths to Become Resistant to Epidermal Growth Factor Receptor Inhibition. Nat. Med. 2016;22:262–269. doi:10.1038/nm.4040. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Turke A.B., Zejnullahu K., Wu Y.-L., Song Y., Dias-Santagata D., Lifsh*ts E., Toschi L., Rogers A., Mok T., Sequist L., et al. Pre-Existence and Clonal Selection of MET Amplification in EGFR Mutant NSCLC. Cancer Cell. 2010;17:77–88. doi:10.1016/j.ccr.2009.11.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Marine J.-C., Dawson S.-J., Dawson M.A. Non-Genetic Mechanisms of Therapeutic Resistance in Cancer. Nat. Rev. Cancer. 2020;20:743–756. doi:10.1038/s41568-020-00302-4. [PubMed] [CrossRef] [Google Scholar]

71. Shen S., Vagner S., Robert C. Persistent Cancer Cells: The Deadly Survivors. Cell. 2020;183:860–874. doi:10.1016/j.cell.2020.10.027. [PubMed] [CrossRef] [Google Scholar]

72. Fisher R.A., Gollan B., Helaine S. Persistent Bacterial Infections and Persister Cells. Nat. Rev. Microbiol. 2017;15:453–464. doi:10.1038/nrmicro.2017.42. [PubMed] [CrossRef] [Google Scholar]

73. Russo M., Sogari A., Bardelli A. Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment. Cancer Discov. 2021;11:1886–1895. doi:10.1158/2159-8290.CD-20-1588. [PubMed] [CrossRef] [Google Scholar]

74. Sharma S.V., Lee D.Y., Li B., Quinlan M.P., Takahashi F., Maheswaran S., McDermott U., Azizian N., Zou L., Fischbach M.A., et al. A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations. Cell. 2010;141:69–80. doi:10.1016/j.cell.2010.02.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Ramirez M., Rajaram S., Steininger R.J., Osipchuk D., Roth M.A., Morinishi L.S., Evans L., Ji W., Hsu C.-H., Thurley K., et al. Diverse Drug-Resistance Mechanisms Can Emerge from Drug-Tolerant Cancer Persister Cells. Nat. Commun. 2016;7:10690. doi:10.1038/ncomms10690. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Touil Y., Igoudjil W., Corvaisier M., Dessein A.-F., Vandomme J., Monté D., Stechly L., Skrypek N., Langlois C., Grard G., et al. Colon Cancer Cells Escape 5FU Chemotherapy-Induced Cell Death by Entering Stemness and Quiescence Associated with the c-Yes/YAP Axis. Clin. Cancer Res. 2014;20:837–846. doi:10.1158/1078-0432.CCR-13-1854. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Sun C., Wang L., Huang S., Heynen G.J.J.E., Prahallad A., Robert C., Haanen J., Blank C., Wesseling J., Willems S.M., et al. Reversible and Adaptive Resistance to BRAF(V600E) Inhibition in Melanoma. Nature. 2014;508:118–122. doi:10.1038/nature13121. [PubMed] [CrossRef] [Google Scholar]

78. Liau B.B., Sievers C., Donohue L.K., Gillespie S.M., Flavahan W.A., Miller T.E., Venteicher A.S., Hebert C.H., Carey C.D., Rodig S.J., et al. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell. 2017;20:233–246.e7. doi:10.1016/j.stem.2016.11.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Swayden M., Chhouri H., Anouar Y., Grumolato L. Tolerant/Persister Cancer Cells and the Path to Resistance to Targeted Therapy. Cells. 2020;9:2601. doi:10.3390/cells9122601. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Guler G.D., Tindell C.A., Pitti R., Wilson C., Nichols K., KaiWai Cheung T., Kim H.-J., Wongchenko M., Yan Y., Haley B., et al. Repression of Stress-Induced LINE-1 Expression Protects Cancer Cell Subpopulations from Lethal Drug Exposure. Cancer Cell. 2017;32:221–237.e13. doi:10.1016/j.ccell.2017.07.002. [PubMed] [CrossRef] [Google Scholar]

81. Ercan D., Xu C., Yanagita M., Monast C.S., Pratilas C.A., Montero J., Butaney M., Shimamura T., Sholl L., Ivanova E.V., et al. Reactivation of ERK Signaling Causes Resistance to EGFR Kinase Inhibitors. Cancer Discov. 2012;2:934–947. doi:10.1158/2159-8290.CD-12-0103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Tricker E.M., Xu C., Uddin S., Capelletti M., Ercan D., Ogino A., Pratilas C.A., Rosen N., Gray N.S., Wong K.-K., et al. Combined EGFR/MEK Inhibition Prevents the Emergence of Resistance in EGFR-Mutant Lung Cancer. Cancer Discov. 2015;5:960–971. doi:10.1158/2159-8290.CD-15-0063. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Taniguchi H., Yamada T., Wang R., Tanimura K., Adachi Y., Nishiyama A., Tanimoto A., Takeuchi S., Araujo L.H., Boroni M., et al. AXL Confers Intrinsic Resistance to Osimertinib and Advances the Emergence of Tolerant Cells. Nat. Commun. 2019;10:259. doi:10.1038/s41467-018-08074-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Zhang Z., Lee J.C., Lin L., Olivas V., Au V., LaFramboise T., Abdel-Rahman M., Wang X., Levine A.D., Rho J.K., et al. Activation of the AXL Kinase Causes Resistance to EGFR-Targeted Therapy in Lung Cancer. Nat. Genet. 2012;44:852–860. doi:10.1038/ng.2330. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Sun Q., Lu Z., Zhang Y., Xue D., Xia H., She J., Li F. Integrin Β3 Promotes Resistance to EGFR-TKI in Non-Small-Cell Lung Cancer by Upregulating AXL through the YAP Pathway. Cells. 2022;11:2078. doi:10.3390/cells11132078. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Noronha A., Belugali Nataraj N., Lee J.S., Zhitomirsky B., Oren Y., Oster S., Lindzen M., Mukherjee S., Will R., Ghosh S., et al. AXL and Error-Prone DNA Replication Confer Drug Resistance and Offer Strategies to Treat EGFR-Mutant Lung Cancer. Cancer Discov. 2022;12:2666–2683. doi:10.1158/2159-8290.CD-22-0111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Shah K.N., Bhatt R., Rotow J., Rohrberg J., Olivas V., Wang V.E., Hemmati G., Martins M.M., Maynard A., Kuhn J., et al. Aurora Kinase A Drives the Evolution of Resistance to Third-Generation EGFR Inhibitors in Lung Cancer. Nat. Med. 2019;25:111–118. doi:10.1038/s41591-018-0264-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Tanaka K., Yu H.A., Yang S., Han S., Selcuklu S.D., Kim K., Ramani S., Ganesan Y.T., Moyer A., Sinha S., et al. Targeting Aurora B Kinase Prevents and Overcomes Resistance to EGFR Inhibitors in Lung Cancer by Enhancing BIM- and PUMA-Mediated Apoptosis. Cancer Cell. 2021;39:1245–1261.e6. doi:10.1016/j.ccell.2021.07.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Kurppa K.J., Liu Y., To C., Zhang T., Fan M., Vajdi A., Knelson E.H., Xie Y., Lim K., Cejas P., et al. Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway. Cancer Cell. 2020;37:104–122.e12. doi:10.1016/j.ccell.2019.12.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Arasada R.R., Shilo K., Yamada T., Zhang J., Yano S., Ghanem R., Wang W., Takeuchi S., f*ckuda K., Katakami N., et al. Notch3-Dependent β-Catenin Signaling Mediates EGFR TKI Drug Persistence in EGFR Mutant NSCLC. Nat. Commun. 2018;9:3198. doi:10.1038/s41467-018-05626-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Maynard A., McCoach C.E., Rotow J.K., Harris L., Haderk F., Kerr D.L., Yu E.A., Schenk E.L., Tan W., Zee A., et al. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing. Cell. 2020;182:1232–1251.e22. doi:10.1016/j.cell.2020.07.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12:31–46. doi:10.1158/2159-8290.CD-21-1059. [PubMed] [CrossRef] [Google Scholar]

93. Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science. 2009;324:1029–1033. doi:10.1126/science.1160809. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Mikubo M., Inoue Y., Liu G., Tsao M.-S. Mechanism of Drug Tolerant Persister Cancer Cells: The Landscape and Clinical Implication for Therapy. J. Thorac. Oncol. 2021;16:1798–1809. doi:10.1016/j.jtho.2021.07.017. [PubMed] [CrossRef] [Google Scholar]

95. Raha D., Wilson T.R., Peng J., Peterson D., Yue P., Evangelista M., Wilson C., Merchant M., Settleman J. The Cancer Stem Cell Marker Aldehyde Dehydrogenase Is Required to Maintain a Drug-Tolerant Tumor Cell Subpopulation. Cancer Res. 2014;74:3579–3590. doi:10.1158/0008-5472.CAN-13-3456. [PubMed] [CrossRef] [Google Scholar]

96. Hangauer M.J., Viswanathan V.S., Ryan M.J., Bole D., Eaton J.K., Matov A., Galeas J., Dhruv H.D., Berens M.E., Schreiber S.L., et al. Drug-Tolerant Persister Cancer Cells Are Vulnerable to GPX4 Inhibition. Nature. 2017;551:247–250. doi:10.1038/nature24297. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Shaffer S.M., Dunagin M.C., Torborg S.R., Torre E.A., Emert B., Krepler C., Beqiri M., Sproesser K., Brafford P.A., Xiao M., et al. Rare Cell Variability and Drug-Induced Reprogramming as a Mode of Cancer Drug Resistance. Nature. 2017;546:431–435. doi:10.1038/nature22794. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Torre E.A., Arai E., Bayatpour S., Jiang C.L., Beck L.E., Emert B.L., Shaffer S.M., Mellis I.A., Fane M.E., Alicea G.M., et al. Genetic Screening for Single-Cell Variability Modulators Driving Therapy Resistance. Nat. Genet. 2021;53:76–85. doi:10.1038/s41588-020-00749-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Goyal Y., Dardani I.P., Busch G.T., Emert B., Fingerman D., Kaur A., Jain N., Mellis I.A., Li J., Kiani K., et al. Pre-Determined Diversity in Resistant Fates Emerges from hom*ogenous Cells after Anti-Cancer Drug Treatment. bioRxiv. 2021:471833. doi:10.1101/2021.12.08.471833. [CrossRef] [Google Scholar]

100. Pisco A.O., Brock A., Zhou J., Moor A., Mojtahedi M., Jackson D., Huang S. Non-Darwinian Dynamics in Therapy-Induced Cancer Drug Resistance. Nat. Commun. 2013;4:2467. doi:10.1038/ncomms3467. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Su Y., Wei W., Robert L., Xue M., Tsoi J., Garcia-Diaz A., Moreno B.H., Kim J., Ng R.H., Lee J.W., et al. Single-Cell Analysis Resolves the Cell State Transition and Signaling Dynamics Associated with Melanoma Drug-Induced Resistance. Proc. Natl. Acad. Sci. USA. 2017;114:13679–13684. doi:10.1073/pnas.1712064115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Moris N., Pina C., Arias A.M. Transition States and Cell Fate Decisions in Epigenetic Landscapes. Nat. Rev. Genet. 2016;17:693–703. doi:10.1038/nrg.2016.98. [PubMed] [CrossRef] [Google Scholar]

103. Raj A., van Oudenaarden A. Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell. 2008;135:216–226. doi:10.1016/j.cell.2008.09.050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Pauklin S., Vallier L. The Cell-Cycle State of Stem Cells Determines Cell Fate Propensity. Cell. 2013;155:135–147. doi:10.1016/j.cell.2013.08.031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Oren Y., Tsabar M., Cuoco M.S., Amir-Zilberstein L., Cabanos H.F., Hütter J.-C., Hu B., Thakore P.I., Tabaka M., Fulco C.P., et al. Cycling Cancer Persister Cells Arise from Lineages with Distinct Programs. Nature. 2021;596:576–582. doi:10.1038/s41586-021-03796-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Rambow F., Rogiers A., Marin-Bejar O., Aibar S., Femel J., Dewaele M., Karras P., Brown D., Chang Y.H., Debiec-Rychter M., et al. Toward Minimal Residual Disease-Directed Therapy in Melanoma. Cell. 2018;174:843–855.e19. doi:10.1016/j.cell.2018.06.025. [PubMed] [CrossRef] [Google Scholar]

107. Dhimolea E., de Matos Simoes R., Kansara D., Al’Khafaji A., Bouyssou J., Weng X., Sharma S., Raja J., Awate P., Shirasaki R., et al. An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence. Cancer Cell. 2021;39:240–256.e11. doi:10.1016/j.ccell.2020.12.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Rehman S.K., Haynes J., Collignon E., Brown K.R., Wang Y., Nixon A.M.L., Bruce J.P., Wintersinger J.A., Mer A.S., Lo E.B.L., et al. Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy. Cell. 2021;184:226–242.e21. doi:10.1016/j.cell.2020.11.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Bramlett C., Jiang D., Nogalska A., Eerdeng J., Contreras J., Lu R. Clonal Tracking Using Embedded Viral Barcoding and High-Throughput Sequencing. Nat. Protoc. 2020;15:1436–1458. doi:10.1038/s41596-019-0290-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Kebschull J.M., Zador A.M. Cellular Barcoding: Lineage Tracing, Screening and Beyond. Nat. Methods. 2018;15:871–879. doi:10.1038/s41592-018-0185-x. [PubMed] [CrossRef] [Google Scholar]

111. Biddy B.A., Kong W., Kamimoto K., Guo C., Waye S.E., Sun T., Morris S.A. Single-Cell Mapping of Lineage and Identity in Direct Reprogramming. Nature. 2018;564:219–224. doi:10.1038/s41586-018-0744-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Weinreb C., Rodriguez-Fraticelli A., Camargo F., Klein A.M. Lineage Tracing on Transcriptional Landscapes Links State to Fate during Differentiation. Science. 2020;367:eaaw3381. doi:10.1126/science.aaw3381. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Chang M.T., Shanahan F., Nguyen T.T.T., Staben S.T., Gazzard L., Yamazoe S., Wertz I.E., Piskol R., Yang Y.A., Modrusan Z., et al. Identifying Transcriptional Programs Underlying Cancer Drug Response with TraCe-Seq. Nat. Biotechnol. 2022;40:86–93. doi:10.1038/s41587-021-01005-3. [PubMed] [CrossRef] [Google Scholar]

114. Guernet A., Mungamuri S.K., Cartier D., Sachidanandam R., Jayaprakash A., Adriouch S., Vezain M., Charbonnier F., Rohkin G., Coutant S., et al. CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations. Mol. Cell. 2016;63:526–538. doi:10.1016/j.molcel.2016.06.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Mechanisms of Acquired Resistance and Tolerance to EGFR Targeted Therapy in Non-Small Cell Lung Cancer (2024)

FAQs

What are the mechanisms of resistance to EGFR targeted therapies? ›

The most common mechanism of acquired resistance to first generation, reversible EGFR-TKIs is the emergence of the T790M gatekeeper mutation in the ATP binding pocket of EGFR, occurring in 50–60% of the patients that relapse after an initial response to gefitinib or erlotinib [27,28].

What are the mechanisms of resistance in NSCLC? ›

In the context of NSCLC, immunotherapeutic resistance can occur through several mechanisms (16–20): 1. Loss or downregulation of immune cell recognition; 2. Tumor microenvironment changes; 3. Immune checkpoint activation; 4.

What is the most common mechanism of EGFR TKI resistance? ›

The most common mechanism is the development of acquired EGFR T790M mutation [9]. T790M was found in about 50% of EGFR–mutant cases that acquired resistance to EGFR TKIs [9]. Patients using either first- or second-generation EGFR TKIs had a similar prevalence of acquired T790M [10].

What is the mechanism of action of EGFR mutation? ›

The initiation of epidermal growth factor receptor (EGFR) kinase activity proceeds via an asymmetric dimerization mechanism in which a “donor” tyrosine kinase domain (TKD) contacts an “acceptor” TKD, leading to its activation.

What is EGFR targeted therapy mechanism? ›

It reversibly binds to the adenosine triphosphate (ATP)-binding site of EGFR and completely inhibits autophosphorylation by EGFR tyrosine kinase. This results in blockage of downstream EGFR signal-transduction pathways, cell-cycle arrest, and inhibition of angiogenesis.

What is a common mechanism in which patients undergoing targeted therapy with EGFR inhibitors develop resistance to these drugs? ›

The most common mechanism of resistance to first-generation EGFR tyrosine kinase inhibitors (e.g., gefitinib and erlotinib) is a mutation in the “gatekeeper” residue (the ATP binding site on the kinase), where methionine replaces threonine (T790M).

What are the 4 mechanisms of resistance? ›

The main mechanisms of resistance are: limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. These mechanisms may be native to the microorganisms, or acquired from other microorganisms.

What are the acquired mechanisms of resistance? ›

The strategies that bacteria use to develop acquired resistance are encoded on plasmids and may be classified into four mechanisms: 1) decreased permeability of the cell wall to antibiotics; 2) modification of enzymes to inactivate antibiotics; 3) drug target site changes; and 4) efflux pumps that remove antibiotics ...

What is the mechanism of action of nintedanib NSCLC? ›

The mechanism of action is thought to involve the restriction of neoangiogenesis by inhibiting various growth factors such as fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), colony-stimulating factor-1-receptor (CSF1R), and ...

What is the mechanism of action of TKI therapy? ›

They work by blocking tyrosine kinase enzymes. TKI enzymes help manage how cells work, including cell signaling and growth and how often cells divide. Some tyrosine kinase inhibitors are used to treat cancer. TKIs work by blocking enzymes and keeping cancer cells from growing.

What is resistance to TKI in Nsclc? ›

The advent of EGFR TKIs has been a game-changer for NSCLC treatments. However, resistance remains a significant challenge, particularly due to the upregulation of HER3. Combining HER3 targeting with EGFR TKIs emerges as a potent countermeasure against such resistance.

What is the EGFR pathway mechanism? ›

EGFR Signaling Pathway Background

They have at least one common structural motif, the EGF domain, which consists of six conserved cysteine residues forming three disulfide bonds. The main structure of EGF domain is a two-stranded beta-sheet followed by a loop to a C-terminal short two-stranded sheet.

What are the most frequent EGFR mutations? ›

EGFR mutations occur in several hotspots between exons 18 and 21. In-frame deletion of exon 19 and L858R point mutation in exon 21 are the most common types of mutations detected, and account for 50% and 40% of patients' samples, respectively [8].

What is the prognosis for EGFR mutation? ›

In patients with advanced non-small cell lung cancer (NSCLC), the presence of a common epidermal growth factor receptor (EGFR) mutation is prognostically favorable as these patients have a superior overall survival (OS) compared with patients with wild type EGFR status.

What type of cancers are caused by EGFR mutation? ›

EGFR-positive lung cancer represents about 10-15% of lung cancer in the United States and generally appears in adenocarcinoma subtype of non-small cell lung cancer. Patients with lung cancers with EGFR mutations tend to have minimal to no smoking history.

What are the mechanisms of BRAF inhibitor resistance? ›

Multiple mechanisms of acquired resistance have been described, including elevated expression of the kinases CRAF, COT1, or mutant BRAF (8–11), activating mutations in N-RAS, MEK1, or AKT1 (12–14), aberrant splicing of BRAF (15), activation of phosphatidylinositol-3-OH kinase (PI3K) via the loss of PTEN (16), and ...

What are the 4 major mechanisms of antimicrobial resistance please select? ›

The main mechanisms of resistance are: limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. These mechanisms may be native to the microorganisms, or acquired from other microorganisms.

What are the mechanisms of CDK4 6 inhibitor resistance? ›

Resistance to CDK4/6 inhibitors can also occur through an acquired (extrinsic) mechanism. These mechanisms include over-activation of oncogenic signaling pathways, such as PI3K, MAPK, and TGFR signaling. PI3K mutation can also lead to overactivation of its signaling cascade.

What are the mechanisms of resistance to PARP inhibitors? ›

The mechanisms of PARPi resistance are complex and mainly have the following ways: (i) the increase of drug efflux; (ii) genomic reversal of BRCA1/2; (iii) restoration of replication fork protection; (iv) any strengthening of the hom*ologous recombination repair process; (v) epigenetic modifications; and (vi) other ...

Top Articles
Latest Posts
Article information

Author: Errol Quitzon

Last Updated:

Views: 6208

Rating: 4.9 / 5 (59 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Errol Quitzon

Birthday: 1993-04-02

Address: 70604 Haley Lane, Port Weldonside, TN 99233-0942

Phone: +9665282866296

Job: Product Retail Agent

Hobby: Computer programming, Horseback riding, Hooping, Dance, Ice skating, Backpacking, Rafting

Introduction: My name is Errol Quitzon, I am a fair, cute, fancy, clean, attractive, sparkling, kind person who loves writing and wants to share my knowledge and understanding with you.